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ABSTRACT

Purpose: To evaluate the in vivo efficiency of commercial polymeric membranes for guided bone regeneration. Methods: Rat 
calvarial critical size defects was treated with LuminaCoat (LC), Surgitime PTFE (SP), GenDerm (GD), Pratix (PR), Techgraft (TG) 
or control (C-) and histomorphometric analysis determined the percentage of new bone, connective tissue and biomaterial 
at 1 or 3 months. Statistical analysis used ANOVA with Tukey’s post-test for means at same experimental time and the paired 
Student’s t test between the two periods, considering p < 0.05. Results: New bone at 1 month was higher for SP, TG and C-, 
at 3 months there were no differences, and between 1 and 3 months PR had greater increase growthing. Connective tissue 
at 1 month was higher for C-, at 3 months for PR, TG and C-, and between 1 and 3 months C- had sharp decline. Biomaterial 
at 1 month was higher for LC, in 3 months for SP and TG, and between 1 and 3 months, LC, GD and TG had more decreasing 
mean. Conclusion: SP had greater osteopromotive capacity and limitation of connective ingrowth, but did not exhibit 
degradation. PR and TG had favorable osteopromotion, LC less connective tissue and GD more accelerated biodegradation.
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Introduction

Severe bone losses caused by fractures and/or pathologies can generate functional or aesthetic changes, affecting the 
quality of life of affected patients1. Despite new technologies, their clinical treatment in implantology, periodontics and oral 
and maxillofacial surgery remains a challenge2. Bone regeneration occurs to a limited extent in large defects, requiring the use 
of osteopromotive biomaterials capable of enhancing this repair3. Guided bone regeneration (GBR) use membrane barriers 
associated with grafts in the region of the defect adjacent to teeth, post-extraction sockets or implants, in order to prevent soft 
tissue invasion and create a biologically suitable environment for osteogenesis and bone maturation4,5. Ideal characteristics 
for membranes include: biocompatibility, occlusiveness, osteopromotion5,6 and resorption to avoid second surgical time7,8.

Polymeric GBR membranes are the most used in the biomedical area7,9,10. Synthetic membranes include polytetrafluoroethylene 
(PTFE), resistant to degradation, bioinert, chemically stable, porous and flexible, and poly(lactic acid-co-glycolic acid) 
(PLGA), which has controlled degradation11–13. Natural membranes are usually of collagen, a biomimetic composition to 
favor the bone repair process14–17, with excellent biocompatibility, variable biodegradability7,18 and extraction sources, such 
as tendon, cortical bone or bovine pericardium11,19,20 or porcine submucosa21,22. Resorption time of polymeric membranes 
range from 4 weeks to 6 months, occuring gradually so that bone formation is possible8,23. Degradation control can be 
related to microporosities < 3 μm, which mantain nutritional diffusion without impairing the mechanical stability24,25, use 
of fibrillar matrix crosslinking techniques or its association with apatite26,27 or thicknesses from 0.1 to 1 mm to achieve 
desirable osteopromotive efficacy28, with greater densities delaying its total degradation29.
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Despite of multiple options for GBR membranes in the dental market, there is no scientific consensus to indicate a gold standard 
that align simultaneously osteopromotive efficiency, physical barrier action against soft tissue ingrowth and balanced resorption during 
tissue repair, as desirable properties30. This study compared the performance of different commercial membranes in an experimental 
in vivo model of a critical size defect in rat calvaria, evaluating bone and connective tissue formation and residual biomaterials.

Methods
Ethical aspects

This study adopted the international principles of Substitution, Reduction and Refinement in Animal Research: Reporting 
of In vivo Experiments (3R-ARRIVE guide). The protocol was approved by the Ethics Committee on the Use of Animals 
of the Federal University of Ceará, Sobral, Brazil, under protocol number 06/2020.

Commercial samples of GBR membranes

Five commercial products approved for clinical dental use in Brazil were selected as test groups31–35 and are described 
in Table 1. All GBR membranes had their commercial dimensions adapted to individual 10 mm² square samples, necessary 
for the in vivo study. After customization, the materials were handled aseptically until the implantation procedure.

Table 1 – Groups of commercial polymeric membranes for GBR used in this study.

Group Product Polymeric matrix Manufacturing properties 

LC LuminaCoat (Criteria, Brazil), Batch: 
LC035/20, ANVISA n.: 80522420002

Natural bovine collagen 
type I 

30 × 20 × 1 mm , resorbable 
after 4–6 weeks31

SP
Surgitime PTFE (Bionnovation, Brazil), 

Batch: 069922, ANVISA 
n.: 10392710009

Synthetic PTFE 30 × 20 × 0.25 mm, 
no resorbable32

GD
GenDerm (Baumer, Brazil), Batch: 

4336456/004345315, ANVISA 
n.: 10345500069

Natural demineralized 
bovine cortical bone 

20 × 20 × 0.15–0.20 mm, 
resorbable after 45 days33

PR Pratix (Baumer, Brazil), Batch: 
004344590, ANVISA n.: 10345500133 Synthetic PLGA 

40 × 30 × 0.15–0.20 mm, 
resorbable after 
90–120 days34

TG Techgraft (Baumer, Brazil), Batch: 
004351444, ANVISA n.: 10345500141

Natural bovine acellular 
pericardium 

20 × 20 × 0.15–0.25 mm, 
resorbable in 4–6 months35

Implants in rat critical size bone defects

Sixty animals were distributed according to different experimental conditions (6 groups, 2 times, 5 animals each). 
The animals were given intramuscular anesthesia with 10% ketamine solution (Dopalen, Sespo Indústria e Comércio Ltda, 
Brazil) at a dose of 100mg/kg and xylazine 2% (Anasedan, Sespo Indústria e Comércio Ltda, Brazil) at a dose of 10 mg/kg. 
Then, there was trichotomy of the upper part of the head and antisepsis with 0.5% aqueous chlorhexidine. A semilunar 
incision was made followed by a mucoperiosteal flap, reflected with Molt’s periosteal elevator, exposing the cortical bone in 
the frontoparietal region. A single, 8-mm diameter circular defect of critical size was created in each animal using a surgical 
trephine drill (Sistema de Implantes Nacionais, Brazil) attached to a contra-angle with 20:1 rotation reduction (Dentscler, 
Brazil) and a surgical micromotor (VK Driller Equipamentos Elétricos Ltda., Brazil) under irrigation conditions with cold 
and sterile 0.9% saline solution during the procedure. The osteotomized fragment was gently removed using an Ochsenbein 
#1 chisel. The test groups had the bone defect filled by one of the materials (G1, G2, G3, G4 or G5). As a negative control 
(C-), it was adopted a natural filling with blood clot after the bone defect. The operated regions had simple sutures with 
4.0 mononylon thread. Subcutaneous anti-inflammatory/analgesic medication Meloxicam (2 mg/kg, Ourofino, Brazil) was 
applied every 12 h for 2 days. At 1 and 3 months after the surgeries, the animals were euthanized by an overdose of anesthetic 
solution and an immediate excisional necropsy of the area compatible with each surgery was performed.
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Histotechnic, histological and histomorphometric analysis

The samples were fixed in 10% buffered formalin solution (v/v), pH 7.0, for 48 h. After fixation, all necropsies were 
decalcified with rapid acid decalcifying solution (Allkimia, Brazil) for 4 days, washed in running water for 1 h, cleaved 
with a razor in the center of the bone defect, dehydrated in increasing baths from 70 to 100% of ethanol, cleared in xylol 
baths, impregnated and embedded in paraffin, evidencing the central region of the bone defect. The paraffin blocks were 
microtomized in 4μm sections and stained in hematoxylin-eosin (HE).

Biological phenomena were analyzed in qualitative and quantitative perspectives. Five images of each sample were captured 
in adjacent, non-overlapping fields using the Cybershot DSC-W300 Super Steady Shoot camera (Sony, Japan) coupled with 
the FWL-1000 optical microscope (Feldman Wild Leitz, Brazil) using a 10x objective lens, 10x ocular lens and 4× digital 
zoom, making a final magnification of 400×. For qualitative analysis, slides from each test and control group were selected and 
morphologically described to represent the observed events. The following biological criteria were evaluated on the edge-to-edge 
extension of the bone defect, covering its entire diameter: newly formed bone, connective tissue and implanted biomaterial.

Quantitative histomorphometric analysis was performed using the ImageJ 1.52a version software (National Institutes 
of Health, USA), calibrated in micrometers/pixel. The biological criteria mentioned above were counted using a grid of 
130 points superimposed on each photomicrograph and from the absolute number of points obtained, the percentage 
volume density (%i) of each parameter was determined according to the Eq. 1:

 %i = 100%
pi

P
⎛
⎝

⎞
⎠  (1)

where pi represents the number of poins in each parameter and P the total number of points. Figure 1 summarizes the in 
vivo characterization procedures of this study.

Data for each parameter were tabulated in Excel software (Microsoft Office, USA), expressed graphically as mean±standard 
deviation and statistically analyzed using the Prism 7.0 software (GraphPad, USA) for comparisons of groups and experimental times. 
Analysis of variance (ANOVA) with Tukey’s post-test was applied to analyze the normal/parametric distribution of the means of 
each parameter between the five experimental groups and the control at each experimental time. Paired Student’s t test was applied to 
analyze the normal/parametric distribution of the means of each parameter between the five experimental groups and the control at 
each experimental time, as dependent samples. They were considered confidence level of 95% and significant differences if p < 0.05.

(a) Critical size bone defect

(b) Membranes for treatment

(c) Histological fields (d) Histomorphometric analysis

Figure 1 – Steps of the in vivo procedure. (a) Surgical creation of critical size bone efect (CSD) without coating in the control (C-); (b) 
Membranes for treatment: LuminaCoat (LC), Surgitime PTFE (SP), GenDerm (GD), Pratix (PR) or TechGraft (TG); (c) After cleavage 
of the samples and processing in paraffin, 5 fields were photocaptured per histological slide along the CSD; (d) Histomorphometric 
analysis by points using ImageJ software, with different biological criteria distinguished by colors.
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Results

The histological analysis showed that all treatments and C- showed a small amount of newly formed bone closer to the 
edges of the bone defects, greater than the islets of bone in its most central region, with a progressive increase in centripetal 
osteogenesis between 1 and 3 months. The connective tissue was more abundant in C- compared to the other groups, 
evolving from a loose extracellular matrix in 1 month to a more fibrous tissue in 3 months. It was possible to observe the 
presence of material in up to 3 months in all groups except for C-, with no noticeable degradation for SP and PR, while LC 
and GD showed evident degradation of the material between 1 and 3 months (Fig. 2).
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Figure 2 – Histological analysis in critical size bone defects (CSD) in rat calvaria for the different experimental groups at one and three 
months. Qualitative data of control (C-), LuminaCoat (LC), Surgitime PTFE (SP), GenDerm (GD), Pratix (PR) and TechGraft (TG). 
All groups exhibited the most prominent presence of new bone (NB) at the edge of the CSD, adjacent to native old bone (OB), while at 
the center of the CSD there were varying amounts of connective tissue (CT) and/or residual membrane (M).
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The histomorphometric analysis showed significant differences for the percentage of new bone at 1 month between 
the groups, with the mean of SP (12.26 ± 2.83%) being higher than the means of LC (5.64 ± 4.54%), PR (3.96 ± 2.19%) 
and GD (1.44 ± 1.31%) and the means of TG (10.38 ± 3.95%) and C- (9.81 ± 3.68%) being higher than the average of GD 
(1.44 ±1.31%). In the experimental period of 3 months, there was no significant difference between the groups (p = 0.074). 
In the evaluation between the experimental times, there was a significant difference for the mean of PR, increasing from 
3.96 ± 2.19% in 1 month to 11.66 ± 5.94% in 3 months (Fig. 3a).

There were significant differences for the percentage of connective tissue at 1 month, with the mean of C- (48.43 ± 10.54%) 
surpassing the means of GD (32.51 ± 6.49%), TG (30.85 ± 3.29%), SP (28.46 ± 12.71%) and LC (25.79 ± 2.87%). In 3 months, 
the means of PR (31.01 ± 5.96%) and TG (27.65 ± 2.27%) exceeded those of LC (20.65 ± 4.88%) and SP (18.85 ± 5.75%), 
as well as C- (30.74 ± 9.15%) was higher than SP (18.85 ± 5.75%). In the evaluation between the experimental times, there 
was a significant difference for C-, decreasing from 48.43 ± 10.54% in 1 month to 30.74 ± 9.15% in 3 months (Fig. 3b).

There were significant differences for the percentage of biomaterial at 1 month, with the mean of LC (42.09 ± 4.28%) 
surpassing the mean of PR (21.25 ± 13.84%). In the period of 3 months, the average of SP (34.64 ± 1.42%) surpassed the 
averages of PR (18.80 ± 12.21%) and GD (7.70 ± 6.35%), while the mean of TG (23.57 ± 2.27%) was higher than the mean 
of GD. In the evaluation between the experimental times, there was a significant difference between 1 and 3 months, for 
LC (from 42.09 ± 4.28% to 20.91 ± 11.88%), GD (from 36, 37 ± 13.01% to 7.70 ± 6.35%) and TG (from 30.28 ± 3.84% to 
23.57 ± 2.27%), which proves the presence of biodegradation in these groups (Fig. 3c).

Considering the results achieved over the 3 months of the experiment and the individual requirements for choosing 
an ideal regenerative membrane, the decreasing order of efficiency in terms of osteopromotive capacity would be: 
SP > PR > TG > LC > GD. As for the smallest tendency to formation of connective tissue, the decreasing order of efficiency 
would be: SP > LC > TG > GD > PR. Finally, regarding the presence of biodegradation, from the most accelerated modality 
to the non-resorption modality, the decreasing order of efficiency would be: GD > PR > LC > TG > SP. SP had greater 
osteopromotive capacity and limitation of connective tissue ingrowth, but did not exhibit degradation. PR and TG had 
favorable osteopromotion, LC less connective tissue and GD more accelerated biodegradation.
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Figure 3 – Histomorphometric analysis of volume density of (a) new bone, (b) connective tissue, and (c) biomaterial in critical size bone 
defects in rat calvaria for the different experimental groups at one and three months. Percentage data of control (C-), LuminaCoat (LC), 
Surgitime PTFE (SP), GenDerm (GD), Pratix (PR) and TechGraft (TG).

Discussion

Semiautomated histomorphometric analysis with manual point counting in software along the length of the critical 
defect is used for initial estimation of inflammation and neovascularization between 7 and 15 days post-surgery36–38 or for 
its main objective of analyzing the percentage of bone formation and maturity, secondarily evaluating connective tissue and 
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residual biomaterial, between 1 and 3 months after surgery4,17,39. Despite the automated counting in software by delimited 
area in pixels converted into mm2 is a fast resource and used with great popularity in thematic research19,27,36–38,40–44, the 
semiautomated counting values the histopathological diagnosis, allowing the optical distinction of new bone from old or 
native bone at the edges of the bone defect, as well as fragments of collagenous biomaterial against connective tissue fibers, 
making the calculation of these parameters more accurate4,17,39. Such scientific evidence makes this research robust, unbiased 
and accurate for the analysis of osteopromotive membranes for GBR.

Critical defects in rat calvaria in control group without the use of membrane generally cause small percentages of newly formed 
bone, ranging from 0.4%43 to 4% at 1 month4,17,27 and from 0.9%40 to 5% in 3 months4,17 or reaching up to 20%, considering the 
average of central regions with up to 2%, intermediate up to 8% and peripheral regions up to 40%39. The amount of connective 
tissue remains constant between 1 and 3 months, with about 23%4 or can reach up to 40% in the aforementioned periods17.

In the experimental rat skull model, membranes for GBR alone can achieve different osteopromotive profiles. In the 
period of 1 and 2 months, the ratio of area of newly formed bone compared to control group can be two to ten times for Bio-
Gide with collagens I and III from swine dermis19,36–38 or Jason with collagen III from porcine pericardium38,42, equal to five 
times for bovine GenDermFlex19, two to four times for Collprotect with collagen from porcine dermis38 or Super Fixorb with 
polylactic acid and hydroxyapatite (60:40)40 and two to three times for bovine GenDerm19,42, and for synthetic membrane 
with policaprolactone and 5% hydroxyapatite37. There are cases such as the Biomend with collagen I that presents formation 
of new bone similar to control group40, the bacterial cellulose membrane bellow of the control group in 1 month and above 
until five times its area in 2 months36 and the PLGA membrane, with no differences compared to control group at 2 months45, 
showing that the performance of these implantable devices can vary greatly, depending on the type and duration of treatment.

Collagen membrane alone after 1 month of implantation in a bone defect can generate 8% of new bone and 0.3% of 
remnants, and when associated with bone graft, it reaches 15% of new bone and 0.03% of remnants27. The combination 
of resorbable collagen membrane Cola-D and xenografts Bio-Oss (bovine; granulometry: 0.25–1 mm) or Bone-XP (porcine; 
granulometry: 0.2–1 mm) can generate new bone, 5.83% and 9.08% at 1 month and 21.68% and 25.22% at 2 months, 
respectively44. Another study with Bio-Oss (granulometry: 0.5–1 mm) coated with BioGide in 1 or 2 layers showed that the 
single coating generated in 1 and 2 months, respectively, more bone (22.7% and 37%) than the double (17.3% and 24.5%) 
or the graft without membrane (11.5% and 16.8%), although the amount of residual material was slightly higher in the 
double (30.2% and 25.5%) than in simple (32.5% and 28.5%) or with graft without membrane (15.3% and 9.4%)43. In rat 
tibia defects, membrane GenDerm alone could favor new bone formation by 25.3% at 1 month and 32.2% at 3 months, 
and when associated with organic bovine graft GenOx, it increased bone formation to 45.5% and 52.4%, respectively46.

Regarding the formation of connective tissue, there was no variation between the membranes studied. However, the literature 
admits some microscopic distinctions in fibrogenesis, according to the type and duration of treatment. Metallic nonresorbable 
biomaterials (e.g., titanium) have more discrete fibrogenesis because they are bioinert47. Natural resorbable polymers 
(e.g., collagen) exhibit greater peripheral and internal cellularity, mild to moderate chronic inflammation (lymphocytes, 
macrophages and giant cells) and fibroblast proliferation, in addition to mild to moderate production of connective matrix 
in the spaces left by the degrading implant up to 60 days11,46–51. Natural composite membranes with collagen and apatite 
also exhibit fibrogenesis similar to collagen biopolymers17,50,52. On the other hand, synthetic polymers present connective 
tissue formation dependent on the degradability pattern, in a lower fibrogenesis scale in non-resorbable biomaterials (e.g., 
PTFE)11,12,24,47,53 and higher in resorbable ones (e.g., PLGA)13,24,45,47,54,55. None of the experimental groups had a foreign body 
granuloma (nonimmunogenic) with a fibrous capsule, which is considered an unwanted implant rejection response17,18,47.

Regarding the biodegradability of membranes in rats, Lumina-Coat confirmed the stability time of 4 to 6 weeks11,31, falling 
short of the Lumina-Coat Double Time, stable up to 8 weeks50,56. Surgitime PTFE did not show resorption during the experiment, 
as expected for the synthetic polymer PTFE11,12,24,32,53. Despite GenDerm being well organized, with high tensile strength and less 
deformation compared to Lumina-Coat and Surgidry Dental F, internal cracks explain structural fragility and greater subcutaneous 
degradation, predicted for up to 45 days11,33. GenDerm fragments disappear after 30 days in tibial defects24,46, which resembles 
another demineralized bone cortical membrane, intact in the subcutaneous tissue at 15 days, degraded in 30 days and absent in 
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60 days20 and differs from BioGide, with subcutaneous residues present up to 63 days48 or mild degradation in swine mandibular 
bone defects up to 12 weeks and disappearing at 27 weeks22. The resorption time predicted between 90 and 120 days of Pratix34 
becomes plausible, as it practically did not change, according to the pattern observed in subcutaneous tissue in 254 or 3 months55 
and already expected for PLGA, with high tensile strength57 and slower degradation13,24, demonstrated subcutaneously from 4 
to 26 weeks45. Techgraft outperformed subcutaneous bovine pericardium membranes, intact in 15 days and absent between 30 
and 60 days20,49. The biodegradation between 4 and 6 months suggested for Techgraft35 converges with the same time observed 
with Jason in subcutaneous tissue38,42 and in swine mandibular defects, slightly degraded up to 12 weeks and absent at 27 weeks22.

Preclinical studies look for membranes with adequate biocompatibility for application to GBR5,51. In general, Bio-Gide 
and Jason are membranes that present a good pattern of non-irritation, considering the inflammatory and repair response51. 
Regarding the tissue dynamics involved, the lower presence of inflammatory cells and twice the number of blood vessels 
in the first fifteen days after implant of Bio-Gide can explain its better performance in comparison to bacterial cellulose 
membranes, polycaprolactone with 5% hydroxyapatite, Jason and Collprotect36–38. Bio-Gide also outnumbered blood vessels 
up to 21 days in relation to bovine membrane Lyostypt48. This behavior could be associated with the pro-angiogenic effect 
of collagens I and III, which would favor osteogenesis16,30.

Regarding the osseodifferentiation process, the higher immunoexpression of osteocalcin and lower of osteopontin between 1 and 
2 months of implantation in the calvaria could be interpreted as favorable bioindicators of greater bone maturation for membrane 
Bio-Gide, both when compared to cellulosic membrane36 and to collagen swine membranes Jason and Collprotect38. Similar results 
were found when comparing the porcine membrane Bio-Gide with the bovine membranes GenDerm and GenDermFlex, with 
higher expression of ostecalcin with porcine origin and of osteopontin with bovine origin at 1 and 2 months of implantation, 
showing a potential correlation between animal source and performance of GBR membranes19,42. Fibrous organization of natural 
collagenic matrices from different sources may explain differences in osteopromotion and degradation time58,59.

Porosity is a very sensitive characteristic of GBR membranes, as nanometric porosities (pores of 0.004 μm) into collagen 
membrane are associated with the same amount of newly formed bone as the control group40. On the other hand, a greater 
porosity reduces the osteopromotive capacity, as in the case of a titanium membrane without pores, which reached a 
greater area of neoformed bone compared to both anodized membranes with pores of 0.4 and 1.5 mm, in the ratio 1.6:1, as 
well as increased immunoexpression of calcein for up to 7 weeks41. Surgitime PTFE features more interconnected synthetic 
polymer fibers, providing less permeability and greater mechanical resistance compared to GenDerm and Lumina-Coat, 
natural polymers with a heterogeneous distribution of collagen fibers, which gives them highly porous surfaces with varied 
diameters42, justifying the present results of biodegradation in natural membranes.

As for thickness, most commercial membranes tested are close to the range of 0.10 to 0.25 mm, most commonly 
reported in polymeric materials for GBR11,18,24,28,38,40,45,46,57. Membranes beyond this range include Collprotect at 0.4 mm 
thickness38, Lumina-Coat at 1 mm11 or Lumina-Coat Double Time at 2 mm50,56. The thicker membrane design attempts to 
mechanically ensure its tissue barrier function, but contributes to a slower and more persistent inflammatory response, 
which can increase the pattern of irritation to the biomaterial16,17,50,56. When comparing Lumina-Coat and Lumina-Coat 
Double Time, the degradation time doubles in the same proportion as its thickness, but it becomes more rigid and less 
attractive to surgical manipulation in small intraoral bone defects11,50,56. In composite membranes of PLGA, HA and βTCP, 
the thickness of 0.2 mm maintained the integrity of the material for up to 30 days, while thicknesses of 0.5 and 0.7 mm 
reached 90 days55. This logic does not always work, as the membrane Jason is half as thick and three times less dense than 
Bio-Gide, but both have similar biodegradation times22,38. To overcome these limitations, microstructural reinforcement 
has been more used, with chemical processes involving crosslinking, in order to keep the membrane thinning, its good 
adaptability to the bone defect and, at the same time, cohesion for a longer time to favor osteopromotion16,17,30.

The detailed description of a biomaterial is essential and should avoid scenarios with technical unconformities, as observed 
in a study with commercial grafts in Brazil, where erroneous information in the product package insert on physical-chemical 
characteristics was revealed in an independent test57. The explicit biological data regarding osteogenesis, fibrogenesis and degradation 
of the tested regenerative membranes can contribute to decision making, good clinical planning and predictability of results in GBR.
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Conclusion

The commercial membranes LuminaCoat, Surgitime PTFE, GenDerm, Pratix and Techgraft showed heterogeneous 
behavior in rat calvarial defects. Although Surgitime PTFE had greater osteopromotive capacity and limitation of connective 
tissue invagination, the biomaterial did not exhibit degradation. Pratix and Techgraft had favorable osteopromotion, 
LuminaCoat less connective tissue and GenDerm more accelerated biodegradation. 

However, the most effective GBR membrane that simultaneously contemplates all the studied criteria remains undefined. 
The difficulty in meeting the set of specificities for choosing an ideal regenerative membrane raises future studies about 
the intrinsic factors of each biomaterial.
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